Escherichia coli K-12 Survives Anaerobic Exposure at pH 2 without RpoS, Gad, or Hydrogenases, but Shows Sensitivity to Autoclaved Broth Products
نویسندگان
چکیده
Escherichia coli and other enteric bacteria survive exposure to extreme acid (pH 2 or lower) in gastric fluid. Aerated cultures survive via regulons expressing glutamate decarboxylase (Gad, activated by RpoS), cyclopropane fatty acid synthase (Cfa) and others. But extreme-acid survival is rarely tested under low oxygen, a condition found in the stomach and the intestinal tract. We observed survival of E. coli K-12 W3110 at pH 1.2-pH 2.0, conducting all manipulations (overnight culture at pH 5.5, extreme-acid exposure, dilution and plating) in a glove box excluding oxygen (10% H2, 5% CO2, balance N2). With dissolved O2 concentrations maintained below 6 µM, survival at pH 2 required Cfa but did not require GadC, RpoS, or hydrogenases. Extreme-acid survival in broth (containing tryptone and yeast extract) was diminished in media that had been autoclaved compared to media that had been filtered. The effect of autoclaved media on extreme-acid survival was most pronounced when oxygen was excluded. Exposure to H2O2 during extreme-acid treatment increased the death rate slightly for W3110 and to a greater extent for the rpoS deletion strain. Survival at pH 2 was increased in strains lacking the anaerobic regulator fnr. During anaerobic growth at pH 5.5, strains deleted for fnr showed enhanced transcription of acid-survival genes gadB, cfa, and hdeA, as well as catalase (katE). We show that E. coli cultured under oxygen exclusion (<6 µM O2) requires mechanisms different from those of aerated cultures. Extreme acid survival is more sensitive to autoclave products under oxygen exclusion.
منابع مشابه
Hydrogenase-3 Contributes to Anaerobic Acid Resistance of Escherichia coli
BACKGROUND Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H(2) production involves consumption of 2H(+), hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2-2.5) ...
متن کاملpH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12.
During aerobic growth of Escherichia coli, expression of catabolic enzymes and envelope and periplasmic proteins is regulated by pH. Additional modes of pH regulation were revealed under anaerobiosis. E. coli K-12 strain W3110 was cultured anaerobically in broth medium buffered at pH 5.5 or 8.5 for protein identification on proteomic two-dimensional gels. A total of 32 proteins from anaerobic c...
متن کاملRelative gene expression in acid-adapted Escherichia coli O157:H7 during lactoperoxidase and lactic acid challenge in Tryptone Soy Broth.
Cross-protection of acid-adapted Escherichia coli O157:H7 against inimical stresses is mediated by the glucose-repressed sigma factor RpoS. However, many food systems in which E. coli O157:H7 occurs are complex and contain glucose. This study was aimed at investigating the contribution of acid and lactoperoxidase (LP)-inducible genes to cross-protection of E. coli O157:H7 against LP system and ...
متن کاملCell density dependent acid sensitivity in stationary phase cultures of enterohemorrhagic Escherichia coli O157:H7.
Escherichia coli O157:H7, the causative agent of hemorrhagic colitis and hemolytic uremic syndrome, can survive in a highly acidic environment. The acid resistance of this organism, as measured by its ability to survive in low pH, depended on the density of the cells present during the assay. At low cell densities (</=2 x 10(7) ml(-1)), about 100% of the stationary phase cells survived in Luria...
متن کاملGlobal analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response.
The ability of Escherichia coli to survive at low pH is strongly affected by environmental factors, such as composition of the growth medium and growth phase. Exposure to short-chain fatty acids, such as acetate, proprionate, and butyrate, at neutral or nearly neutral pH has also been shown to increase acid survival of E. coli and Salmonella enterica serovar Typhimurium. To investigate the basi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013